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ABSTRACT
Calibration of wide field-of-view cameras is a fundamental step
for numerous visual media production applications, such as 3D
reconstruction, image undistortion, augmented reality and camera
motion estimation. However, existing calibration methods require
multiple images of a calibration pattern (typically a checkerboard),
assume the presence of lines, require manual interaction and/or
need an image sequence. In contrast, we present a novel fully au-
tomatic deep learning-based approach that overcomes all these
limitations and works with a single image of general scenes. Our ap-
proach builds upon the recent developments in deep Convolutional
Neural Networks (CNN): our network automatically estimates the
intrinsic parameters of the camera (focal length and distortion pa-
rameter) from a single input image. In order to train the CNN, we
leverage the great amount of omnidirectional images available on
the Internet to automatically generate a large-scale dataset com-
posed of millions of wide field-of-view images with ground truth
intrinsic parameters. Experiments successfully demonstrated the
quality of our results, both quantitatively and qualitatively.
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1 INTRODUCTION
Wide field-of-view (FOV) cameras permit to acquire images with
wide angles and are typically equipped with a fisheye lens, such as
the popular GoPro cameras. Thanks to their wide field-of-view, they
are useful for several tasks related to visual media production, such
as camera motion estimation and 3D reconstruction [Bazin et al.
2010, 2012; Häne et al. 2014; Lee et al. 2013; Liu et al. 2017; Schöps
et al. 2017], human actions and 3D skeleton [Rhodin et al. 2016], as
well as AR [Streckel et al. 2005]. To enable such applications, it is
required to calibrate the cameras. Camera calibration refers to the
estimation of their intrinsic parameters [Hartley and Zisserman
2004], and the two most important calibration parameters for wide
FOV cameras are the focal length and distortion parameter. Due
to their inherent distortion and specific projection models, wide
FOV cameras require dedicated calibration methods, see for exam-
ple [Antunes et al. 2017; Fitzgibbon 2001; Mei and Rives 2007; Melo
et al. 2013; Micusík and Pajdla 2003; Scaramuzza et al. 2006; Swami-
nathan and Nayar 2000; Ying and Hu 2004; Ying and Zha 2008],
among many others. However, existing calibration methods for
wide FOV cameras have important limitations. For example, they
require multiple observations of a calibration object (e.g., checker-
board [Gasparini et al. 2009; Mei and Rives 2007; Scaramuzza et al.
2006], dot pattern [Shah and Aggarwal 1994] or sphere [Ying and
Zha 2008]), and/or require the observation of specific structures in
the scene (e.g., lines or vanishing points in structured scenes [An-
tunes et al. 2017; Barreto and Araújo 2005; Bräuer-Burchardt and
Voss 2001; Melo et al. 2013; Swaminathan and Nayar 2000; Ying
and Hu 2004]), and/or require estimating the camera motion from
multiple images [Fitzgibbon 2001; Kang 2000; Micusík and Pajdla
2003; Xiong and Turkowski 1997; Zhang 1996]. In practice, the most
popular approach among the ones listed above is based on checker-
boards [Gasparini et al. 2009; Mei and Rives 2007; Scaramuzza et al.
2006], which requires taking several images of a checkerboard. In
summary, existing camera calibration methods are time-consuming
(e.g., several images and manual process), cumbersome (e.g., use
of a checkerboard), require strong assumptions on the scene (e.g.,
lines and vanishing points) and/or cannot work on single images.

In contrast, we propose a deep learning-based approach for wide
FOV camera calibration that overcomes all these limitations: it
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does not require any motion estimation, calibration target, several
images or specific structure in the scene. Moreover it works on
single input image of general scenes and thus, can also be applied
on single images "in the wild"1 (e.g., downloaded from the Internet).

Given an input image acquired by any wide FOV camera (e.g.,
action camera like GoPro, DSLR camera with high-quality fisheye
lens, smartphone with casual clip-on fisheye lens or catadioptric
camera), our approach estimates the focal length of the camera and
the distortion parameter in a fully automatic manner.

Our approach builds upon the recent developments in deep learn-
ing: we use a deep Convolutional Neural Network (CNN) with
Inception-V3 architecture [Szegedy et al. 2016]. Our work focuses
on two main aspects. First, a major challenge to train the network is
the need for numerous training examples. In our context, we need
plenty of images with different intrinsic parameters (focal length
and distortion). For this, we leverage the large collection of om-
nidirectional images available on the Internet, which allows us to
automatically generate numerous wide FOV images with different
focal lengths and amounts of distortion. In turn, we can generate a
large-scale dataset composed of millions of wide FOV images with
ground truth intrinsic parameters that we use to train the CNN.
The second aspect is the comparison of different CNN architectures
(e.g., single network, dual networks and sequential networks).

The two main contributions of this paper are the following:
• We present a CNN-based approach for automatic calibration
of wide FOV cameras. Contrary to existing methods, our ap-
proach does not need calibration targets (e.g., checkerboard),
lines, multiple views or motion estimation. Given a single
image of a general scene, it automatically estimates the focal
length and distortion parameter.

• An automatic approach for generating a large-scale dataset
composed of millions of wide FOV images with ground truth
intrinsic parameters to train a CNN.

To the best of our knowledge, our work is the first deep learning
approach for automatic calibration of wide FOV cameras from a
single image. We provide code and additional materials on our
project website http:// cml.kaist.ac.kr/projects/DeepCalib.

2 RELATEDWORK
Existing calibration methods: Camera calibration aims to esti-

mate the intrinsic parameters of the camera [Hartley and Zisser-
man 2004]. Several methods for wide FOV camera calibration have
been proposed, and can be divided into four main categories. The
most popular and widely used category is based on a known cali-
bration target (typically a checkerboard) placed in the scene and
observed under different viewpoints in several images [Gasparini
et al. 2009; Mei and Rives 2007; Scaramuzza et al. 2006; Shah and Ag-
garwal 1994]. Other targets have also been studied, such as dot pat-
tern [Shah and Aggarwal 1994] or sphere [Ying and Zha 2008]. The
methods belonging to this category are usually the most accurate,
for example because the features in the images (e.g., checkerboard
corners) can be precisely detected in the images and the calibra-
tion target model is known beforehand. An important limitation is
that they require a specific calibration target and several images.

1"in the wild" as mentioned in several works, such as [Bell et al. 2014; Chen et al. 2016;
Lin et al. 2012].

Therefore, they are cumbersome, time-consuming, and also not
applicable to single images "in the wild".

The second category is based on the presence of geometric struc-
tures in the scene, typically lines [Barreto and Araújo 2005; Work-
man et al. 2016; Zhang et al. 2015] and vanishing points [Antunes
et al. 2017; Hughes et al. 2010]. For instance, the approach devel-
oped by Barreto and Araújo [2005] needs an image containing at
least three lines that are manually given by the user, and Antunes
et al. [2017] rely on orthogonal vanishing points. Therefore, these
methods are limited to structured man-made scenes containing
lines, and thus cannot deal with general environments, like land-
scapes or natural scenes, and when a large portion of the image is
covered by an object, such as a face close-up.

The third category is camera self-calibration which jointly esti-
mates the intrinsic parameters of the camera and its motion from a
sequence of images. For example, Fitzgibbon [2001] solves a radial
fundamental matrix and tri-focal tensor which allows to estimate
together the distortion parameter with the epipolar geometry be-
tween two or three successive images. This seminal work led to
several extensions with different configurations, number of images
and minimal solutions [Jiang et al. 2014; Micusík and Pajdla 2003].
The two main limitations of self-calibration are the requirement of
several images and the need to perform camera motion estimation,
which is still a major challenge in itself (e.g., point correspondences,
repetitive texture, lighting changes and motion ambiguity).

The last category is based on deep learning. One of the first at-
tempts is the approach of Mendonça et al. [2002], which uses neural
network to compute the camera parameters given 3D point loca-
tions from a calibration target and their respective 2D observations.
Recent deep learning methods aiming to estimate camera param-
eters from a single image without calibration target have been
attempted. However, all these techniques are designed to partly
solve the calibration problem. For example, DeepFocal [Workman
et al. 2015] predicts only the focal length (no distortion estima-
tion). It is trained using few images (around 7,000). In contrast,
we solve a more general and challenging problem (focal length
and distortion), and propose an efficient method for generating
millions of training images. Rong et al. [2016] estimate only the
radial distortion (no focal length). Thus, their approach can only
be applied for image visual undistortion. In contrast, our work can
estimate both focal length and distortion parameter, and thus can
be used for a wider range of applications, such as image undistor-
tion and 3D reconstruction Section 4). Moreover, their dataset is
generated from perspective images, which leads to incomplete wide
FOV images with occlusion margins. In contrast, we can generate
complete images (without any margins), even with a wide FOV.
Hold-Geoffroy et al. [2018] estimate the focal length and camera
orientation (no distortion parameter). They train a CNN on images
generated from panoramas using standard pinhole model, and thus,
are limited to perspective cameras. In contrast, our approach es-
timates both focal length and distortion. Therefore, it can handle
a much wider range of cameras, such as fisheye and catadioptric
cameras; and it also enables additional applications, such as SfM
and image undistortion. Overall, estimating both the focal length
and distortion requires dedicated methods and investigations, such
as the selection of the distortion model, automatic training dataset
generation, and network architectures (see Section 3).

http://cml.kaist.ac.kr/projects/DeepCalib
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Image undistortion: A common task when using wide FOV cam-
eras is image undistortion (also called rectification in some con-
texts), i.e., "remove" the distortion of the input image, so that the
lines in the world appear straight in the output rectified images.
This is typically used for display and visualization purposes to have
a more "natural" look. When the intrinsic parameters are known,
image undistortion can be conducted, for example using popular
image processing libraries and softwares, such as OpenCV, Im-
ageMagick, PTLens and Hugin. This requires to know the intrinsic
parameters, which needs to conduct calibration. However, as dis-
cussed above, existing calibration methods have several limitations
and might not be applicable (e.g., single image available).

For photography professionals, a popular approach for image
undistortion is the Lens Correction filter in Adobe Photoshop. This
tool requires some information about the camera and lens, such
as the camera model, focal length and lens model. Therefore, it is
not applicable for unlisted camera or lens models, as well as for
images "in the wild", such as images downloaded from the Internet
for which camera or lens information might be unknown. In these
cases, Photoshop allows the users to manually undistort the image
via interactive sliders, but it is a time-consuming task that has to
be repeated for each camera/lens.

Another commercial tool is the Fisheye-Hemi plug-in for Photo-
shop [Fisheye-Hemi 2015]. It is used for fisheye image visualization
and aims to "produce an aesthetically pleasing image" from an input
fisheye image (as quoted in their website). However, the underly-
ing visualization algorithm is proprietary, no technical details are
provided and the estimated camera parameters are not returned.
Due to the lack of public information, it is not totally clear if it
actually aims to estimate the camera parameters. This tool is made
for image visualization, not for camera calibration, i.e., it does not
return the camera intrinsic parameters. An approach similar to this
tool is the visualization method of Carroll et al. [2009] which aims
to create a visually pleasing version of wide FOV images. They
optimize a spatially-varying mapping to preserve local shape and
maintain scene lines straight. However their method is also ap-
plicable only for image visualization, i.e., it does not compute the
intrinsic parameters. Moreover, it requires the user to mark lines
manually (about 20 lines on average, as stated in their paper), which
is a time-consuming task that must be repeated for each image.

In summary, contrary to the above methods dedicated to image
undistortion, our approach performs explicit camera calibration
and runs automatically, and thus enables several applications, such
as not only image undistortion, but also SfM and inserting virtual
objects in AR images.

3 PROPOSED APPROACH
This section presents the main aspects of our approach: selection
of the camera distortion model (Section 3.1), automatic generation
of a large-scale dataset with ground truth intrinsic parameters (Sec-
tion 3.2), and description of our network architectures (Section 3.3).

3.1 Projection and distortion model
Wide FOV cameras require specific projection models to map a 3D
world point to the image. Various models have been developed. The
most common one is the Brown-Conrady’s model [Brown 1971]. It

(a) (b)

Figure 1: (a) pinhole camera model [Hartley and Zisserman
2004] and (b) unified sphericalmodel [Barreto 2006; Mei and
Rives 2007].

is particularly effective to approximate reasonably small distortions
via a polynomial function. Despite its popularity, this model has
several important limitations. For example, the types of cameras
which can be modeled with this representation are limited. For
instance, it is not suitable for wide FOV cameras due to their large
inherent distortions [Sturm et al. 2011]. In addition, it is well known
that this model is hardly reversible [Sturm et al. 2011].

Another popular model is the divisionmodel [Fitzgibbon 2001] to
represent fisheye cameras. However, it has been designed only for
fisheye lens and is not recommended for standard cameras. Similarly
to Brown’s model, the division model is theoretically impossible
to revert. While it is possible to approximate the inversion, this
may negatively affect the training process, particularly for large
distortions [Tang et al. 2017] (see supplementary material).

In this paper, we opted for the unified spherical model [Barreto
2006; Mei and Rives 2007] for several reasons. First, it is fully re-
versible; second, it can handle a very large range of distortions
(from none and small to very large); and third, both the projection
and back-projection processes admit closed-form solution which
can be computed very efficiently. This is particularly interesting
for GPU image generation where this type of computation is faster
than look-up-table [Häne et al. 2014]. Moreover, the spherical model
is compatible with a wider range of cameras than other models,
for example perspective, wide-angle, fisheye and catadioptric cam-
eras. Lastly, it is particularly convenient for our application since it
involves a single distortion parameter ξ ranged between 0 and 1
(and slightly more than 1 for certain types of catadioptric camera
[Ying and Hu 2004]). Therefore the value of ξ is convenient to
bound, interpret and quantize, which are very desirable properties
for training CNNs compared to existing polynomial models [Rong
et al. 2016]. Notice that a single distortion parameter is generally
considered enough to model the distortion [Fitzgibbon 2001].

The unified spherical model relies on a stereographic projec-
tion (Figure 1(b)). First, a 3Dworld point Pw = (X ,Y ,Z ) is projected
onto the sphere at Ps = (Xs ,Ys ,Zs ) = Pw /∥Pw ∥. This spherical
point Ps is then projected onto the image plane at the location
p = (x ,y). This projection starts from a point Oc located at (0, 0, ξ )
above the sphere centerO. The distance ξ between these two points
models the geometric distortion of the camera. The entire projection
process can be expressed as:

p = (x ,y) =

(
X f

ξ
√
X 2+Y 2+Z 2+Z

+ u0,
Y f

ξ
√
X 2+Y 2+Z 2+Z

+v0

)
, (1)



DeepCalib CVMP ’18, December 13–14, 2018, London, United Kingdom

Figure 2: Given an input panorama, we automatically generate images with different focal lengths f and distortion values ξ ,
via the unified spherical model [Barreto 2006; Mei and Rives 2007]2.

with (u0,v0) the pixel coordinates of the principal point in the image,
f the focal length (with square pixels), and ξ the distortion param-
eter [Mei and Rives 2007]. One might notice that when ξ = 0 for
perspective cameras, Eq. (1) reduces to the standard pinhole perspec-
tive projection [Hartley and Zisserman 2004]. As mentioned above,
one of the advantages of the spherical model is the closed-form
solution of the inverse projection equation [Barreto 2006; Mei and
Rives 2007]. Given a 2D image point p = (x ,y), the back-projection
from the image to the sphere is computed by:

Ps = (ωx̂ ,ωŷ,ω − ξ ) with ω =
ξ +

√
1 + (1 − ξ 2)(x̂2 + ŷ2)

x̂2 + ŷ2 + 1
, (2)

and [
x̂ , ŷ, 1

]T
≃ K−1p where K =


f 0 u0
0 f v0
0 0 1

 . (3)

The matrix K is the standard intrinsic calibration matrix [Hartley
and Zisserman 2004]. In this work, we follow the common assump-
tion that the principal point is at the image center, the skew is
negligible and the pixel aspect ratio is one (therefore these parame-
ters have been intentionally omitted in the definition of K), and we
aim to estimate the focal length f and the distortion parameter ξ .

3.2 Generation of training dataset
In this paper, we investigate a deep learning approach for automatic
calibration of wide FOV cameras. To train the deep learning CNN,
we need numerous training examples. However, to the best of our
knowledge, there is no existing large-scale dataset of wide FOV
images with ground truth intrinsic parameters that could be used
to train a deep learning network. Concretely, to train our network,
we need millions of images with different focal lengths and a large
variety of distortions, along with the corresponding ground truth
values. In practice, it is cumbersome and virtually impossible to
manually capture such data. Furthermore, the calibration of all these
cameras would also be hardly feasible for a large-scale dataset. For
these reasons, we propose to generate a dataset synthetically.

A straightforward but naive approach would be to generate
wide field-of-view images from a set of standard (perspective) cal-
ibrated images. However, adding distortion (i.e., increasing the
field of view) in standard images inevitably leads to non-visible
parts becoming visible, i.e., "occlusion" margins near the image
borders typically shown as black area. This leads to non-realistic
2Credits: panoramic photo by David Iliff with CC-BY-SA 3.0 license (https://
creativecommons.org/licenses/by-sa/3.0).

data. To overcome this limitation, we propose to leverage the large
collections of panoramas available on the Internet because their
complete 360-degree FOV can emulate any amounts of FOV (see Fig-
ure 2). Another advantage of using panoramas is that we can point
the virtual camera to different orientations (azimuth and eleva-
tion) in order to observe different parts of the scene and mimic
tilted cameras, which can provide additional images from a single
panorama. In this work, we use panoramas from a dataset collected
on the Internet. This dataset contains about 67,000 high-resolution
9104 × 4552px panoramas acquired in various scenes, such as in-
door/outdoor, urban/natural and bright/dark.

Given an input panorama, the generation of a new image with a
specific focal length and distortion value is composed of two main
steps (see Figure 2). First, the panorama is linearly mapped onto the
unit sphere. For this, let us consider a pixel (x ,y) in the panorama,
and writeW and H respectively for the width and the height of
the panorama. Then x is converted to the azimuth angle θ such
that x ∈ (1,W ) is linearly mapped to θ ∈ (0, 2π ), and similarly y is
converted to the elevation angle ϕ such that y ∈ (1,H ) is linearly
mapped to ϕ ∈ (−π/2,π/2). By doing so for each pixel, we can
project the panorama onto the sphere. The second step is to create
a new synthetic image via a virtual camera, i.e., by reprojection
using Eq. (1) with the desired values for focal length f and distortion
parameter ξ . In practice, to avoid the artifacts inherent to forward
mapping (such as holes, inpainting, and rounding), we instead
follow a backward mapping strategy and apply the back-projection
of Eq. (2). Some representative results are shown in Figure 2.

By following this approach, we can automatically generate a
large-scale dataset composed of millions of images with ground
truth intrinsic parameters and covering a large range of image con-
figurations, such as different focal lengths, distortions, appearances,
colors, compositions, visible objects, camera types, scene types, etc.

3.3 Network architecture
Given an input image, we follow a deep learning-based approach to
predict the distortion parameter and the focal length. We privileged
and built upon a state-of-the-art Inception-V3 structure [Szegedy
et al. 2016]. We experimented with three different network architec-
tures based on Inception-V3 that we will describe below. For each
network architecture, we solved both the classification and regres-
sion problems. For the classification problem, we used softmax as
the activation function for the output layer(s) and cross entropy for
the loss function. For the regression problem, we used the sigmoid
activation in the output layer(s) and the logcosh loss.

https://creativecommons.org/licenses/by-sa/3.0)
https://creativecommons.org/licenses/by-sa/3.0)
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Figure 3: Illustration of the three network architectures: Sin-
gleNet (a), DualNet (b) and SeqNet (c). The input is the im-
age I to calibrate, and the outputs are the focal length f and
the distortion parameter ξ . In SeqNet, the value of the focal
length f estimated by the first network is concatenated into
one of the dense layers of the second network.

We now describe the three different network architectures that
we experimented with and evaluated. The difference between these
three architectures is that they each have specific output layer(s).
The first architecture is a single network, that we call SingleNet,
with two output dense layers (see Figure 3(a)): one for distortion
estimation and one for focal length estimation.

Our second network architecture, called DualNet, is composed
of two independent networks (see Figure 3(b)): one outputs the
focal length, while the other outputs the distortion value. In other
terms, the network in charge of the focal length (resp. distortion)
should be invariant to the distortion (resp. focal length).

The third network architecture, called SeqNet, is a sequence of
two joint networks (see Figure 3(c)): the first one outputs the focal
length, while the second network accepts as an input this estimated
focal length value and the input image to estimate the distortion
parameter. In practice the value of the focal length estimated by
the first network is concatenated into one of the dense layers of
the second network.

4 RESULTS
4.1 Parameters of the network
To train the networks listed in Section 3.3, we generated a large-
scale dataset composed of millions of images with a resolution of
299 × 299px from all the panoramic images of the SUN360 dataset
(see Section 3.2). For classification training, we used focal lengths
on a range between 50 and 500px with a step size of 10, along
with distortion values on a range between 0 and 1.2 with a step
size of 0.02 (discrete dataset). For regression training, we randomly
sampled the values of focal length and distortion parameter on
the same ranges described above (continuous dataset). We split the
dataset into three subsets: 80% for training, 10% for testing, and
10% for validation. Each original panorama is used exclusively for
training, or testing, or validation, i.e., none of the original panora-
mas belongs to more than one dataset. We performed standard data
augmentation by randomly adding Gaussian noise, modifying the
brightness and contrast, and image mirroring. Our three networks
are pretrained on the ImageNet dataset, and we further train them
on our generated dataset with early stop strategy to prevent over-
fitting [Raskutti et al. 2014]. We set the learning rate to 10−5 and
used a batch size of 64 for both classification and regression.

Figure 4: Cumulative error distribution of estimated distor-
tion (left) and focal length (right) with respect to ground
truth. In this experiment we compared three network ar-
chitectures (SingleNet, DualNet and SeqNet), and for each
of them both regression (abbreviated Reg) and classification
(abbreviated Class).
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Figure 5: Confusion matrix of our prediction vs. ground
truth for the distortion parameter (left) and focal length
(right) on the generated image dataset.

4.2 Evaluation
In this section, we evaluate and compare the performance of our
three network configurations and regression/classification. The
performance is measured on the same continuous dataset. Figure 4
shows the cumulative error distribution for both distortion and
focal length with respect to ground truth. First, it shows that, sur-
prisingly, the classification models provide more accurate results
than regression models. Second, it shows that the three network
architectures (SingleNet, DualNet and SeqNet) have a similar perfor-
mance for distortion estimation, and SingleNet provides the highest
performance, by a small margin, for focal length estimation. Dual-
Net and SeqNet are composed of two networks, while SingleNet is
composed of only one network. Therefore the training and feed-
forward execution of SingleNet is twice faster than DualNet and
SeqNet. That is why SingleNet appears to be the network architec-
ture of choice in terms of accuracy and running time. Therefore
we consider only SingleNet-Classification in the remaining of the
paper as the architecture with best performance.

Figure 5 shows the confusion matrix of our prediction vs. ground
truth for both the distortion and the focal length. It shows that the
network consistently estimates the proper values for both variables.
Indeed, the plots exhibit a well distinct diagonal. However, we
notice a performance decrease when the focal length increases and,
inversely, when the distortion parameter decreases. This analysis
is consistent with the experiments presented in Section 4.4 and in
the supplementary material.



DeepCalib CVMP ’18, December 13–14, 2018, London, United Kingdom

(a)

(b)

0

0.
02

5

0.
05

0.
07

5

0.
1

0.
12

5

0.
15 0.

2

0.
4

0.
7

Ground truth distortion

0

0.2

0.4

0.6

0.8

O
ur

 p
re

di
ct

ed
 d

is
to

rti
on

urban
semi-urban
nature

(c)

Figure 6: Analysis of the distortion on different scene types.
(a) Representative images of the three scene types: urban,
semi-urban and nature. (b) User study results on the amount
of perceived distortion with respect to the ground truth dis-
tortion parameter value. (c) Comparison of our estimated
distortion parameter value vs. ground truth.

4.3 User study on human distortion perception
The discrepancy between the values estimated by the network and
the ground truth is difficult to assess on a qualitative level from a hu-
man perspective. That is why we conducted a user study to measure
the required level of accuracy of distortion parameter estimation
performed by our network. In this study, we asked participants to
rate the amount of perceived distortion in images.

After some preliminary results, we noticed a significant bias
on the amount of distortion perceived by the participants for cer-
tain types of scene. We debriefed with the participants, and they
commented that distortion is clearly visible in images containing
lines since they appear as bent curves. In contrast, images with no
lines appear less distorted. It is not surprising since lines have been
extensively used for wide FOV camera calibration [Antunes et al.
2017; Barreto and Araújo 2005; Bräuer-Burchardt and Voss 2001;
Melo et al. 2013; Swaminathan and Nayar 2000; Ying and Hu 2004],
and the goal of image undistortion is to make the lines straight.

That is why we decided to re-conduct the user study where the
images were manually classified into three main scene categories
based on the amount of lines: urban (many lines), semi-urban (a
very few lines) and nature (no lines at all). Representative images
of these categories are available in Figure 6(a). We generated 480
images from 8 different panoramic images per scene category from
the 360SUN dataset [Xiao et al. 2012], with focal length set to 150px
and different values of the distortion parameter. We sampled the
distortion values from 0 to 0.15 with a step of 0.025, plus larger
distortions 0.2, 0.4 and 0.7. 14 participants joined the user study and
they were asked to answer ‘What is the amount of visible fisheye
lens distortion?’. They could rate on an integer scale from 1 to 5,
where 1 means ‘no visible distortion’, 2 ‘very little visible distortion’,
3 ‘moderate amount visible’, 4 ‘strong amount visible’, and 5 ‘very
strong amount visible’. Results are available in Figure 6(b). First,

it demonstrates that the amount of perceived distortion increases
with the actual amount of distortion, as expected. Second, it shows
that the amount of perceived distortion indeed depends on the
image category: distortions are more visible in urban images than
in nature images, even if generated with the actual same value of
the distortion parameter. Third, we can use this result to define a
success threshold. The figure shows that when the actual distortion
is less than 0.2, the amount of perceived distortion for any image
categories has a score lower than 2, which corresponds to ‘no
visible distortion’ or ‘very little visible distortion’. Therefore, we
can set the range of an acceptable distortion error to 0.2. Going
back to the evaluation in Figure 4, it means that our success rate for
distortion estimation is 78%, i.e., that is the percentage of images
whose distortion error is lower than 0.2.

Additionally, we tested the accuracy of our approach on the same
set of images that was used in the user study. Figure 6(c) shows our
predicted distortion value vs. ground truth for the different scene
categories. It shows that our network performs similarly well for
the different scene categories, i.e., it deals with urban images (many
lines) as well as with natural scenes (no lines at all).

4.4 Comparison to state-of-the-art calibration
methods

In this section, we conduct a quantitative comparison to the follow-
ing popular state-of-the-art calibration methods based on checker-
boards: Mei’s toolbox [Mei and Rives 2007] (based on the spherical
model), OpenCV Brown [Zhang 2000], OpenCV Fisheye [Bradski
2000] (based on the division model [Fitzgibbon 2001]) and Scara-
muzza’s Toolbox [Scaramuzza et al. 2006]. Additional comparison
to line-based approaches [Antunes et al. 2017; Santana-Cedrés et al.
2016] are available in the supplementarymaterial. We experimented
with four camera setups. The first three setups consist of a Point-
Grey Flea3 camera with a 1328 × 1048 resolution and equipped
with three different lenses: 1) an Avenir 4mm, 2) an Avenir 2.8mm
providing a wide FOV, and 3) a Fujinon fisheye lens 1.8mm with a
FOV over 180◦. The fourth camera setup is a consumer level action
camera GoPro HERO6 at a resolution of 1920× 1080px. To calibrate
the cameras with existing methods based on checkerboards, we
acquired about 30 pictures of checkerboard per camera. To calibrate
the cameras with our approach, we provided a single image of gen-
eral scene per camera (see images in the left column of Table 1). To
compare the quality of the calibration results, we measure and re-
port the reprojection error. Existing toolboxes directly provide the
reprojection error in pixels (since they use checkerboard corners).
To compute the reprojection error of our approach, we input our
calibration parameters (estimated from a single image of general
scene) into Mei’s toolbox and performed a pose-only bundle ad-
justment on the same checkerboard images (i.e., our parameters f
and ξ , as well as the principal point (u0,v0), are not optimized).

The calibration results are available in Table 1. It contains the
estimated focal length f , the set of distortion parameters of their
respective camera projection model, as well as the mean reprojec-
tion error in pixel. Overall, most of the existing toolboxes obtains
a subpixelic accuracy (when used on applicable cameras, as dis-
cussed below), and our approach is slightly less accurate than the
existing toolboxes. However several important aspects should be
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(a) (b) (c)

Figure 7: 3D reconstruction results: front view (a), top view (b) and side view (c). Top row: results obtained with our parameters
used for initialization step. Bottom: results obtained with the automatic COLMAP initialization of intrinsic parameters.

Table 1: Camera calibration results for different cameras and
calibration methods. All the methods use multiple checker-
board pictures, while ours require a single picture of a gen-
eral scene.

Method f distortion mean error (px)
Avenir 2.8mm Ours 954 0.77 3.40

Mei 1973 1.48 0.12
OpenCV Fisheye N/A N/A N/A
OpenCV Brown 796 -0.30, 0.17, -0.00, -0.00, -0.07 0.20
Scaramuzza 788 -788.50, 0, 3.55−4, 2.11−7, −2.62−10 1.01

Avenir 4mm Ours 1189 0.47 2.10
Mei 2270 0.97 0.13

OpenCV Fisheye N/A N/A N/A
OpenCV Brown 1158 -0.27, 0.28, 0.00, 0.00, -0.21 0.29
Scaramuzza 1157 -1157, 0.00, 2.89−4, −2.45−7, 1.79−10 0.54

GoPro Ours 1182 0.82 1.11
Mei 1561 1.28 0.12

OpenCV Fisheye 787 0.15, -0.77, 1.61, -0.98 0.7
OpenCV Brown N/A N/A N/A
Scaramuzza 791 -791.4, 0.00, 0.00, −1.12−6, 3.10−10 0.82

Fisheye Ours 777 1.01 1.27
Mei 1351 1.79 0.10

OpenCV Fisheye 488 -0.09, 0.65, -1.79, 1.13 1.05
OpenCV Brown N/A N/A N/A
Scaramuzza 487 -487.7, 0, 8.18−4, −4.39−7, 4.32−10 1.48

emphasized. First of all, OpenCV Fisheye calibration leads to a re-
projection error of more than 100px on Avenir 4mm and Avenir
2.8mm lenses since it is not originally designed for perspective or
low-distortion images. These failures cases are noted N/A (for Not
Applicable) in the table. In contrast, our approach is applicable on
perspective, low-distortion and wide FOV images. Second, similarly,
Brown’s model is not suitable to handle high distortion [Kannala
and Brandt 2006]. In practice, the automatic process in OpenCV
Brown skipped around half of the calibration images for the GoPro
camera and the Fujinon fisheye lens, which confirms that Brown’s
model is not adapted to wide FOV cameras. These failures cases are
also noted N/A. In contrast, our approach is seamlessly applicable
to perspective and wide FOV cameras, and leads to a reprojection
error of around 1px for the GoPro camera and the Fujinon fish-
eye lens. Third, our accuracy remains competitive, for example for
wide angle cameras such as GoPro and fisheye lens, especially com-
pared to Scaramuzza’s toolbox and the OpenCV Fisheye method.
Fourth, we believe that our reprojection accuracy remains overall
satisfying, especially considering our assumptions (e.g., principal
point at the center of the image and zero skew) and the facts that
1) our approach does not use any calibration target, 2) is based on
a single image, 3) does not perform any explicit optimization of the
reprojection error, contrary to all these existing methods, and 4) is
applied on small 299× 299px images, while other methods use high

resolution images. Moreover, we will show that our approach can
be practically useful for multiple applications, such as initialization
for SfM (see Section 4.5) and image undistortion (see Section 4.6).

Finally, we would like to emphasize that our work does not aim to
compete with checkerboard based approaches in terms of accuracy,
but rather aims to provide a solution for camera calibration where
traditional techniques cannot be applied, for example single image,
images in the wild, or no calibration target.

To conclude this experiment, we would like to underline that
calibrating the cameras with a checkerboard took around 30-60
minutes per calibration. This duration includes setting the checker-
board, capturing several images of the checkerboard from different
viewpoints, copying the images to the computer, using the calibra-
tion toolbox, clicking on corners, selecting a non-radial line (for
Mei’s toolbox), among other tasks. In contrast, our approach takes
less than 2 minutes (to take the picture, copy it to the computer
and click on the run button), is fully automatic, needs just a single
image of a general scene (i.e., does not require any specific calibra-
tion patterns), does not require any setup and the calibration takes
around 50ms (on NVIDIA GeForce GTX 1080 Ti GPU).

4.5 3D reconstruction
Camera calibration is an essential step for Structure from Mo-
tion (SfM). We conducted experiments where we applied our cali-
bration approach to estimate the intrinsic parameters in order to
initialize the SfM pipeline. We used COLMAP [Schönberger and
Frahm 2016] along with our bundle adjustment adapted to the
unified spherical model, both of which strongly rely on the initial-
ization of the intrinsic parameters.

For this experiment, we used an Avenir 4mm lens mounted on
a PointGrey Flea3 camera, and acquired an image sequence com-
posed of around 300 images. We applied our calibration approach
on the images of the sequence, and used the median values of
the focal length and distortion parameter for SfM initialization. A
representative 3D reconstruction result is shown in Figure 7, and
additional results are available in the supplementary material. It
demonstrates the drastic difference between the results obtained us-
ing the camera parameters estimated by our approach (top row) and
by the automatic COLMAP parameter initialization without EXIF
file (bottom row). Notice that in both cases, the initial parameters
are refined during the bundle adjustment. In Figure 7(a)-bottom,
the reconstruction by the COLMAP initialization has a clearly visible
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Figure 8: Examples of automatic undistortion results on images in the wild3. Left: Original image. Right: output of
our algorithm. One may note the great variety of image appearance, including close/far objects, indoor/outdoor, true
color/photoshopped, vertical/tilted viewpoint, and ground/aerial views.

curved horizon. Similarly, in the top view of Figure 7(b)-bottom,
we can observe that the wall edges are bent. Moreover, in most
cases, the reconstruction cannot be operated without these initial
parameters. In contrast, Figure 7-top shows that our approach can
correctly preserve the geometric structures of the building, such as
the straight walls, parallel windows and horizon.

4.6 Undistortion of images in the wild
To challenge the robustness of our algorithm, we propose to undis-
tort a set of wide FOV images "in the wild", i.e., downloaded from
the Internet (without ground truth available). The images have
been captured from unknown types of cameras and lenses having
different characteristics, such as camera model, lens type, focal
length, distortion, optics quality, resolution and light sensitivity.
Given an image, we apply our network to estimate the focal length
and distortion parameter. Then for the undistortion itself, the input
distorted image is back-projected on the unit sphere using Eq. (2)
and the estimated intrinsic parameters. This spherical image is then

projected on the image plane with the desired intrinsic parame-
ters. For instance, to generate a perspective image exempt of any
distortions (pinhole model), we fixed ξ to 0 and the focal length
to 150px. Note that other focal length values could be used for
different zooming and cropping effects when ξ is set to 0.

A set of representative results is available in Figure 8. It shows
that our algorithm is able to correctly predict the distortion parame-
ter and focal length under various scenarios and environments. For
instance, our network is able to deal with indoor (Figure 8(f,h,m,p))
and outdoor (Figure 8(b,c,e,r)) scenes, as well as under different
3Credits: (a) photo by Pau Brown with license CC-BY 2.0; (b) photo by Stig Nygaard
with license CC-BY 2.0; (c) photo by Nan Palmero with license CC-BY 2.0; (d) photo by
Eli Christman with license CC-BY 2.0; (e) photo by Eli Christman with license CC-BY
2.0; (f) photo by Chris Dag with license CC-BY 2.0; (g) photo by Robert Couse-Baker
with license CC-BY 2.0; (h) photo by Matthew Paulson with license CC-BY-NC-ND
2.0 (https://creativecommons.org/licenses/by-nc-nd/2.0/); (i) photo by Paul Stevenson
with license CC-BY 2.0; (j) photo by Jake Cook with license CC-BY 2.0; (k) photo by
Raissa Ruschel with license CC-BY 2.0; (l) photo by Yann Gar with license CC-BY 2.0;
(m) photo by Chris Dag with license CC-BY 2.0; (n) photo by Michael Guthmann with
license CC-BY 2.0 (https://creativecommons.org/licenses/by/2.0/); images (o), (p), (q),
(r) were acquired by the authors.
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Figure 9: Comparison of catadioptric camera calibration.
Left: input catadioptric image4. Middle: undistortion result
by the state-of-the-art Barreto’s toolbox [Barreto andAraújo
2005] with manual selection of lines. Right: undistortion re-
sult by our automatic deep learning approach.

lighting conditions like night (see Figure 8(k) and day (Figure 8(b)).
Our approach can handle images modified with a heavy image
editing process, such as HDR color manipulation (Figure 8(j)). Our
network shows also robustness to "confusing" images, such as Fig-
ure 8(g) with a curved reflective surface. Similarly, clutter envi-
ronment like Figure 8(f) can be handled by our approach. In ad-
dition, our approach also handles various camera viewpoints like
tilt upward (Figure 8(d)), close objects (Figure 8(i,q)) and strong
perspective effect (Figure 8(a,l,n)). Moreover, it can also handle
images with naturally distorted contents – not to be undistorted
– such as circular patterns (Figure 8(j)). Furthermore, under chal-
lenging conditions, like in Figure 8(q), where a face covers most
of the image, our network also leads to visually satisfying results.
Finally, our algorithm can successfully handle images acquired
from a drone camera (Figure 8(o)) and a smartphone with clip-on
fisheye lens (Figure 8(p)). Overall, this set of results demonstrates
the adaptability of our approach to process images with various
appearances and characteristics. Additional results are available in
the supplementary material.

In addition to these experiments with dioptric cameras, we also
tested our approach on the challenging case of catadioptric cameras.
A representative example is available in Figure 9. In this figure, a
catadioptric image has been automatically and successfully undis-
torted by our approach. For comparison, we also provide the result
obtained by Barreto’s calibration toolbox dedicated to catadioptric
cameras where the user has to manually extract long lines [Barreto
and Araújo 2005]. It shows that our result is visually as satisfying as
the one obtained by manual state-of-the-art calibration with lines.

4.7 Limitations and future work
While our approach is accurate and versatile (as shown in the above
experiments), it still has limitations. For example, we observed that
our approach has difficulties with challenging images affected by
strong motion blur and over-exposure. A representative example
is shown in Figure 10(a), where the network returns inaccurate
intrinsic parameters leading to an unsatisfying image undistortion
(see the convex lines at the bottom of the wall in the undistorted
image). Note that strong motion blur and over-exposure are also a
limitation common to the existing calibration methods.

Another limitation is the rolling shutter effect. An example is
shown in Figure 10(b), where the input image contains rolling shut-
ter artifacts [Zhuang et al. 2017]. Training a network to determine

4Credits: photo by João P. Barreto [Barreto and Araújo 2005]

(a) (b)

Figure 10: Representative failure examples: (a) input im-
age affected by strong motion blur and over-exposure (left),
and the resulting undistortion (right), (b) input image5 af-
fected by rolling shutter (left) and the resulting undistortion
(right).

if the curvatures present in an image are induced by the lens distor-
tion or rolling shutter is an interesting direction for future work.

We also observed that our intrinsic estimation tends to be less
accurate for low distortion (see Figure 5), even if the network was
trained on this type of images. We believe that it might be due to
the uniform distribution of distortion and focal length parameters
during the data generation. In practice, the "amount" of visually per-
ceived distortion in images seems to increase with ξ very quickly
in a non-linear manner (see Figure 6(b)). This may lead to an un-
balanced data generation in favor of cameras equipped with wide
angle lenses. That is why a promising direction for future work
would be the generation of images using a parameter distribution
adapted to the quantity of perceived distortion in the image.

The unified spherical model and other existing lens distortion
models (see Section 3.1) have an ambiguity between the focal length
and distortion parameter [Cornelis et al. 2002; Hartley and Kang
2007; Li and Hartley 2005], i.e., different combinations of focal
length and distortion values may lead to the same (or similar) projec-
tion of a world point in the image. Therefore a promising extension
of our approach is to incorporate the mathematical relationship
between the focal length and distortion into the loss function.

5 CONCLUSION
We have presented the first deep learning-based approach for auto-
matic intrinsic calibration of wide FOV cameras. The only required
input is a single image of a general scene, and our approach can au-
tomatically estimate the focal length and distortion parameter. For
this, we introduced amethod to automatically generate a large-scale
dataset of wide FOV images with ground truth intrinsic parameters
in order to train the CNN. We also investigated three different net-
work architectures and observed that SingleNet is the network of
choice in terms of accuracy and execution time (both training and
running time). We have demonstrated the accuracy of our approach
in various experiments on synthetic data and real images. Addi-
tionally, we successfully applied our approach on various cameras,
such as machine vision cameras equipped with fisheye lens, GoPro
cameras, smartphones with clip-on fisheye lens, and catadioptric
cameras, demonstrating the robustness of our approach and its gen-
eral applicability. Moreover, experiments also demonstrated that
our approach can correctly handle wide FOV images "in the wild".
We also compared our results to several state-of-the-art calibration
methods and showed that a great advantage of our approach is
that it can be successfully used for several practical cases when
5Credits: photo by Bingbing Zhuang [Zhuang et al. 2017]
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existing state-of-the-art methods cannot be applied, for example
single image, images in the wild, unstructured scenes, absence of
lines, no calibration target and/or manual process. Finally, our work
constitutes a first large-scale benchmark and provides evaluation
dataset for future research on camera calibration. Our code and
dataset are available on our project website.

ACKNOWLEDGMENTS
This research was partially supported by the KAIST High Risk High
Return Project (HRHRP) and KAIST Research Promotion Team
through URP program. It was also partially supported by the Na-
tional Research Foundation of Korea (NRF) grant funded by the Ko-
rean government (MSIT) (No. NRF-2017R1C1B5077030). F. Rameau
was supported by Korea Research Fellowship Program through
the National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT and Future Planning (2015H1D3A1066564).
We are very grateful to Michel Antunes and João P. Barreto for
running their line-based method on our image dataset. We also
thank Amirsaman Ashtari for the drone image acquisition.

REFERENCES
Michel Antunes, João P. Barreto, Djamila Aouada, and Björn Ottersten. 2017. Unsuper-

vised Vanishing Point Detection and Camera Calibration from a Single Manhattan
Image with Radial Distortion. In CVPR.

João P. Barreto. 2006. A Unifying Geometric Representation for Central Projection
Systems. CVIU (2006).

João P. Barreto and Helder Araújo. 2005. Geometric Properties of Central Catadioptric
Line Images and Their Application in Calibration. TPAMI (2005).

Jean-Charles Bazin, Cédric Demonceaux, Pascal Vasseur, and In So Kweon. 2010.
Motion Estimation by Decoupling Rotation and Translation in Catadioptric Vision.
CVIU (2010).

Jean-Charles Bazin, Cédric Demonceaux, Pascal Vasseur, and In So Kweon. 2012.
Rotation Estimation and Vanishing Point Extraction by Omnidirectional Vision in
Urban Environment. IJRR (2012).

Sean Bell, Kavita Bala, and Noah Snavely. 2014. Intrinsic Images in the Wild. TOG
(2014).

Gary Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).
Christian Bräuer-Burchardt and Klaus Voss. 2001. A New Algorithm to Correct Fish-

Eye-and Strong Wide-Angle-Lens-Distortion From Single Images. In ICIP.
Duane C. Brown. 1971. Close-Range Camera Calibration. Photogrammetric Engineering

(1971).
Robert Carroll, Maneesh Agrawala, and Aseem Agarwala. 2009. Optimizing Content-

Preserving Projections for Wide-Angle Images. TOG (SIGGRAPH) (2009).
Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. 2016. Single-Image Depth Percep-

tion in the Wild. In NIPS.
Kurt Cornelis, Marc Pollefeys, and Luc Van Gool. 2002. Lens Distortion Recovery for

Accurate Sequential Structure and Motion Recovery. In ECCV.
Fisheye-Hemi. 2015. https://imadio.com/products/prodpage_hemi.aspx. (2015).
Andrew Fitzgibbon. 2001. Simultaneous Linear Estimation of Multiple View Geometry

and Lens Distortion. In CVPR.
Simone Gasparini, Peter Sturm, and João P. Barreto. 2009. Plane-Based Calibration of

Central Catadioptric Cameras. In ICCV.
Christian Häne, Lionel Heng, Gim Hee Lee, Alexey Sizov, and Marc Pollefeys. 2014.

Real-Time Direct Dense Matching on Fisheye Images Using Plane-Sweeping Stereo.
In 3DV.

Richard Hartley and Sing Bing Kang. 2007. Parameter-Free Radial Distortion Correction
with Center of Distortion Estimation. (2007).

Richard Hartley and Andrew Zisserman. 2004. Multiple View Geometry in Computer
Vision. Cambridge University Press.

Yannick Hold-Geoffroy, Kalyan Sunkavalli, Jonathan Eisenmann, Matt Fisher, Emiliano
Gambaretto, Sunil Hadap, and Jean-François Lalonde. 2018. A Perceptual Measure
for Deep Single Image Camera Calibration. In CVPR.

Ciaran Hughes, Patrick Denny, Martin Glavin, and Edward Jones. 2010. Equidistant
Fish-Eye Calibration and Rectification by Vanishing Point Extraction. TPAMI
(2010).

Fangyuan Jiang, Yubin Kuang, Jan Erik Solem, and Kalle Åström. 2014. A Minimal
Solution to Relative Pose with Unknown Focal Length and Radial Distortion. In

ACCV.
Sing Bing Kang. 2000. Catadioptric Self-Calibration. In CVPR.
Juho Kannala and Sami S. Brandt. 2006. A Generic Camera Model and Calibration

Method for Conventional , Wide-Angle, and Fish-Eye Lenses. TPAMI (2006).
Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys. 2013. Motion Estimation for

Self-Driving Cars with a Generalized Camera. In CVPR.
Hongdong Li and Richard Hartley. 2005. A Non-Iterative Method for Correcting Lens

Distortion from Nine Point Correspondences. OMNIVIS (2005).
Wen-Yan Lin, Linlin Liu, Yasuyuki Matsushita, Kok-Lim Low, and Siying Liu. 2012.

Aligning Images in the Wild. In CVPR.
Peidong Liu, Lionel Heng, Torsten Sattler, Andreas Geiger, and Marc Pollefeys. 2017.

Direct Visual Odometry for a Fisheye-Stereo Camera. In IROS.
Christopher Mei and Patrick Rives. 2007. Single View Point Omnidirectional Camera

Calibration from Planar Grids. In ICRA.
Rui Melo, Michel Antunes, João P. Barreto, Gabriel Falcão, and Nuno Gonçalves. 2013.

Unsupervised Intrinsic Calibration from a Single Frame Using a "Plumb-Line"
Approach. In ICCV.

Márcio Mendonça, Ivan N. Da Silva, and José E.C. Castanho. 2002. Camera Calibration
Using Neural Networks. WSCG (2002).

Branislav Micusík and Tomás Pajdla. 2003. Estimation of Omnidirectional Camera
Model from Epipolar Geometry. In CVPR.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. 2014. Early Stopping and Non-
Parametric Regression: an Optimal Data-Dependent Stopping Rule. JMLR (2014).

Helge Rhodin, Christian Richardt, Dan Casas, Eldar Insafutdinov, Mohammad Shafiei,
Hans-Peter Seidel, Bernt Schiele, and Christian Theobalt. 2016. EgoCap: Egocentric
Marker-less Motion Capture with two Fisheye cameras. TOG (SIGGRAPH Asia)
(2016).

Jiangpeng Rong, Shiyao Huang, Zeyu Shang, and Xianghua Ying. 2016. Radial Lens Dis-
tortion Correction Using Convolutional Neural Networks Trained with Synthesized
Images. In ACCV.

Daniel Santana-Cedrés, Luis Gomez, Miguel Alemán-Flores, Agustín Salgado, Julio
Esclarín, Luis Mazorra, and Luis Alvarez. 2016. An Iterative Optimization Algorithm
for Lens Distortion Correction Using Two-Parameter Models. Image Processing On
Line (2016).

Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart. 2006. A Toolbox for
Easily Calibrating Omnidirectional Cameras. In IROS.

Johannes L. Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion Revis-
ited. In CVPR.

Thomas Schöps, Torsten Sattler, Christian Häne, and Marc Pollefeys. 2017. Large-scale
Outdoor 3D Reconstruction on a Mobile Device. CVIU (2017).

Shishir Shah and J. K. Aggarwal. 1994. A Simple Calibration Procedure for Fish-Eye
(High-Distortion) Lens Camera. In ICRA.

Birger Streckel, Jan-Friso Evers-Senne, and Reinhard Koch. 2005. Lens Model Selection
for a Markerless AR Tracking System. In ISMAR.

Peter Sturm, Srikumar Ramalingam, Jean-Philippe Tardif, Simone Gasparini, and João P.
Barreto. 2011. Camera Models and Fundamental Concepts Used in Geometric
Computer Vision. Foundations and Trends in Computer Graphics and Vision (2011).

Rahul Swaminathan and Shree K. Nayar. 2000. Nonmetric Calibration of Wide-Angle
Lenses and Polycameras. TPAMI (2000).

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In CVPR.

Zhongwei Tang, Rafael Grompone von Gioi, Pascal Monasse, and Jean-Michel Morel.
2017. A Precision Analysis of Camera Distortion Models. TIP (2017).

Scott Workman, Connor Greenwell, Menghua Zhai, Ryan Baltenberger, and Nathan
Jacobs. 2015. DeepFocal: a Method for Direct Focal Length Estimation. In ICIP.

Scott Workman, Menghua Zhai, and Nathan Jacobs. 2016. Horizon Lines in the Wild.
In BMVC.

Jianxiong Xiao, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. 2012. Recognizing
Scene Viewpoint Using Panoramic Place Representation. In CVPR.

Yalin Xiong and Kenneth Turkowski. 1997. Creating Image-Based VR Using a Self-
Calibrating Fisheye Lens. In CVPR.

Xianghua Ying and Zhanyi Hu. 2004. Can We Consider Central Catadioptric Cameras
and Fisheye Cameras within a Unified Imaging Model. In ECCV.

Xianghua Ying and Hongbin Zha. 2008. Identical Projective Geometric Properties of
Central Catadioptric Line Images and Sphere Images with Applications to Calibra-
tion. IJCV (2008).

Mi Zhang, Jian Yao, Menghan Xia, Kai Li, Yi Zhang, and Yaping Liu. 2015. Line-Based
Multi-Label Energy Optimization for Fisheye Image Rectification and Calibration.
In CVPR.

Zhengyou Zhang. 1996. On the Epipolar Geometry Between Two Images with Lens
Distortion. In ICPR.

Zhengyou Zhang. 2000. A Flexible New Technique for Camera Calibration. TPAMI
(2000).

Bingbing Zhuang, Loong-Fah Cheong, and Gim Hee Lee. 2017. Rolling-Shutter-Aware
Differential SfM and Image Rectification. In ICCV.

https://imadio.com/products/prodpage_hemi.aspx

	Abstract
	1 Introduction
	2 Related work
	3 Proposed approach
	3.1 Projection and distortion model
	3.2 Generation of training dataset
	3.3 Network architecture

	4 Results
	4.1 Parameters of the network
	4.2 Evaluation
	4.3 User study on human distortion perception
	4.4 Comparison to state-of-the-art calibration methods
	4.5 3D reconstruction
	4.6 Undistortion of images in the wild
	4.7 Limitations and future work

	5 Conclusion
	Acknowledgments
	References

